Unveiling Considerations for GPU Maximization

The Engine of HPC

GPUs are the primary engines in the ever-evolving landscape of high-performance computing (HPC), powering everything from 3D simulations to artificial intelligence using intricate mathematical operations. Those working closely with GPUs understand that a fundamental challenge in harnessing them effectively is efficiently executing the complex interplay of threads while managing memory bandwidth.

Low-level Optimization

Arc Compute’s pioneering research highlights the significant benefits of running concurrent processes, taking advantage of opportunities to execute additional arithmetic operations on GPU performance during memory access cycles. Innovations in low-level GPU task management defy the conventional isolation of application/task execution, facilitating optimized pipelines and bandwidth without sacrificing performance.

Adhering to Amdahl’s Law and Gustafson’s Law, Arc Compute minimizes compute times through low-level optimization points, mitigating latencies created in memory access times by thread divergence and “cold” SM cores. A strategic pairing of compute-bound and memory-bound workloads that doesn't over-saturate pipelines is at the core of these GPU performance optimizations, involving meticulous orchestration of task execution and pipeline utilization.

Continuous Development

As GPU architectures continue to evolve, the ongoing development of optimization strategies is crucial. Leading this effort, Arc Compute is enabling adaptability for all future GPU architectures. Join us on this journey to redefine efficiency benchmarks, blending innovation and technical expertise in the HPC space.

Arc Compute enables 100% GPU utilization

Pipeline Optimization: Arc Compute delves into low-level GPU task management, saturating pipelines by task matching to ensure seamless task processing and efficient data transmission.

Amdahl’s Law: A formula used to find the maximum possible improvement by only improving a particular part of a system. It is often used in parallel computing to predict the theoretical speedup while utilizing multiple processors.

Gustafson’s Law: A principle in parallel computing that addresses the issue of scalability in parallel systems. As the number of processors increases, the overall computational workload can be increased proportionally to maintain constant efficiency.

Estimated Read Time
Date Published
November 21, 2023
Last Updated
Arc Compute
Arc Compute

Explore Our High-Performance NVIDIA GPU Servers

NVIDIA HGX B300 NVL16 Baseboard

NVIDIA HGX B300 Servers

Build AI factories that train faster and serve smarter with the next generation of NVIDIA HGX™ systems, powered by Blackwell Ultra accelerators and fifth generation NVLink technology.

NVIDIA HGX B200 Baseboard

NVIDIA HGX B200 Servers

Leverage the power of NVIDIA Blackwell GPUs for accelerated AI and HPC workloads, offering 15x faster inference and 12x lower energy consumption.

NVIDIA RTX PRO 6000 Server Edition GPU

NVIDIA RTX PRO 6000 Servers

Unleash Blackwell architecture in your data center with RTX PRO 6000 Server Edition. Perfect for demanding AI visualization, digital twins, and 3D content creation workloads.

NVIDIA HGX H200 Baseboard

NVIDIA HGX H200 Servers

Experience enhanced memory capacity and bandwidth over H100, ideal for large-scale AI model training.

NVIDIA HGX H100 Baseboard

NVIDIA HGX H100 Servers

Optimize your infrastructure with NVIDIA's best-selling enterprise GPU, delivering unparalleled performance and scalability.